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Distributed Optimization in Machine Learning 

Number of nodes in the network

• Nodes can access their local loss function only


• Nodes collaborate to minimize the sum 


• Synchronous communications

local loss of node i
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Distributed Optimization with Adversaries (Byzantines)
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Gossip communication
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The Robust Gossip framework
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   Definition: Robust aggregation function
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Instances of robust aggregations

1. Sort ∥z1∥ ≤ … ≤ ∥zn∥

2.a) Remove vectors larger than ∥zn−b∥
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Instances of robust aggregations

1. Sort ∥z1∥ ≤ … ≤ ∥zn∥

2.a) Remove vectors larger than ∥zn−b∥

F(z1, …, zn) =
n−b

∑
i=1

zi

2.b) Clip vectors larger at ∥zn−2b∥
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n

∑
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min (∥zi∥,∥zn−2b∥)
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F-Robust Gossip is r-robust

Theorem 
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μmax(L) Algebraic connectivity

In fully connected graphs  

       r-robust until a proportion of  aversaries
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↪ 1/(2ρ+1)



Tightness of the breakdown point

Theorem 

There are arbitrarily sparse graphs  and initial values  on 
which, if , no decentralized algorithm is  r-robust 
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Tightness of the breakdown point

  is the best we can have !↪ ρ = 1

 At most  adversaries in fully-connected graphs↪ 1/3
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Tightness of the breakdown point
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F-RG recovers existing algorithms

• Trimming + F-RG corresponds, in fully connected graphs, to Nearest Neighbor Averaging


• Clipping + F-RG with another oracle clipping threshold recovers ClippedGossip    (w. )ρ = 4
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Experiments - communication only
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Experiments - CNN on MNIST 
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More in the paper

 Convergence for local SGD steps + communication with F-RG


 A new attack that builds on the spectral properties of the graph


 Experiments
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Experiments - communication w. Erdos Renyi
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